

VESTER UNIVERSIT

U.S. Department of Veterans Affairs

/eterans Health Administration Office of Research & Development

TRAUMATIC BRAIN INJURY AND DIZZINESS: ASSOCIATIONS AND MEDIATING FACTORS

¹VA RR&D, National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR; ²Department of Communication Sciences and Disorders, Western Washington University, Bellingham, WA; ³OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR; ⁴OHSU-Department of Otolaryngology-Head and Neck Surgery, Portland, OR; ⁵DoD Hearing Center of Excellence, Defense Health Agency, San Antonio, TX; ⁶The Geneva Foundation, Tacoma, WA

INTRODUCTION

Associations between traumatic brain injury (TBI) and dizziness have been previously reported.^{1,2} It is well known that TBI is also associated with mental health (MH) conditions and sleep disturbances.^{3,4} The extent to which MH conditions and sleep disturbances are associated with self-reported dizziness remains unknown. If present, these associations would suggest a mediated pathway between TBI and selfreported dizziness. In this poster, we examine those associations and evaluate potential mediators of the relationship between TBI and selfreported dizziness in post-9/11 Service members and Veterans.

METHODS

Participants (n=916)

 Post-9/11 U.S. Service members (n=424) and Veterans recently separated from military service (n=492) enrolled in the Noise Outcomes In Service members Epidemiology (NOISE) Study.⁵

Potential Mediators

- Mental Health (MH) Conditions:
 - Post-traumatic stress disorder (PTSD): assessed with the Primary Care PTSD Screener (Yes = score of 4 or greater, No = score < 4).⁶
 - Anxiety & Depression: assessed with the Hospital Anxiety and Depression Screener (7 questions for both MH conditions; Yes = score \geq 8, No = score < 8 on respective questions).⁷
- Sleep Disturbances: assessed with Epworth Sleepiness Scale (Yes = score of 9 or greater, No = score < 9). 8

Self-Reported Exposures

- TBI History: Reported TBI(s) or no reported TBI.
- TBI Cause: Blast or other cause.

Self-Reported Outcomes

• *Dizziness:* Yes = reported sometimes/often dizzy, No= reported never/rarely dizzy.

Statistical Analysis

- Cross-sectional analysis of baseline data
- Regressed MH conditions/sleep disturbances on varied TBI exposures
- Regressed dizziness on varied MH conditions/sleep disturbances
- Multivariate logistic regression models to estimate adjusted odds ratios (aOR) and 95% confidence intervals (CI)
- All aOR adjusted for: age, gender, race, military branch, service component, branch of longest military service, deployment status • aOR[†] also adjusted for blast history

RESULTS

Table 1: Study sample demographics and prevalence of selfreported dizziness.

	Service members (n=424)	Veterans (n=492)	
Age, mean (SD)	34.6 (8.7)	34.1 (9.3)	
Sex ratio (m:w)	2:1	5.6:1	
Years of service, mean(SD)	12.1 (7.5)	11.3 (8.5)	
Prevalence of self- reported dizziness	22.4%	30.0%	

RESULTS CONTINUED

Tables 2-5: Varied TBI exposures by MH conditions/sleep disturbances. Displayed are the n (%) of the sample reporting TBI exposures by screening result for MH conditions/sleep disturbances

		Service Members		Veterans	
		PTSD	No PTSD	PTSD	No PTSD
TBI	TBI	26 (49%)	27 (51%)	76 (59%)	53 (41%)
History	No TBI	59 (16%)	312 (84%)	103 (29%)	258 (71%)
TBI Cause	Other TBI Cause	14 (64%)	8 (36%)	32 (70%)	14 (30%)
	Blast TBI Cause	12 (39%)	19 (61%)	44 (53%)	39 (47%)
	No TBI	59 (16%)	312 (84%)	103 (29%)	258 (71%)
		Anxiety	No Anxiety	Anxiety	No Anxiety

		Anxiety	No Anxiety	Anxiety	No Anxiety
TBI	TBI	28 (53%)	25 (47%)	87 (67%)	42 (33%)
History	No TBI	96 (26%)	275 (74%)	160 (44%)	201 (56%)
TBI Cause	Other TBI Cause	13 (59%)	9 (41%)	36 (78%)	10 (22%)
	Blast TBI Cause	15 (48%)	16 (52%)	51 (61%)	32 (39%)
	No TBI	96 (26%)	275 (74%)	160 (44%)	201 (56%)

		Depression	No Depression	Depression	No Depression
TBI	TBI	13 (25%)	40 (75%)	56 (43%)	73 (57%)
History	No TBI	36 (10%)	335 (90%)	65 (18%)	296 (82%)
TBI Cause	Other TBI Cause	7 (32%)	15 (68%)	20 (43%)	26 (57%)
	Blast TBI Cause	6 (19%)	25 (81%)	36 (43%)	47 (57%)
	No TBI	36 (10%)	335 (90%)	65 (18%)	296 (82%)

		Sleep	No Sleep	Sleep	No Sleep
		Disturbances	Disturbances	Disturbances	Disturbances
TBI	TBI	34 (64%)	19 (36%)	65 (50%)	64 (50%)
History	No TBI	157 (42%)	214 (58%)	138 (38%)	223 (62%)
TBI Cause	Other TBI Cause	13 (59%)	9 (41%)	26 (57%)	20 (43%)
	Blast TBI Cause	21 (68%)	10 (32%)	39 (47%)	44 (53%)
	No TBI	157 (42%)	214 (58%)	138 (38%)	223 (62%)

Table 6: MH conditions/sleep disturbances by self-reported dizziness. Displayed are the n (%) of the sample screening results for MH conditions/sleep disturbances by self-reported dizziness.

	Service I	Vembers	Veterans		
	Yes Dizziness	No Dizziness	Yes Dizziness	No Dizziness	
PTSD	37 (44%)	48 (56%)	86 (48%)	93 (52%)	
No PTSD	59 (17%)	280 (83%)	63 (20%)	248 (80%)	
Anxiety	51 (41%)	73 (59%)	109 (44%)	138 (56%)	
No Anxiety	45 (15%)	255 (85%)	40 (16%)	203 (84%)	
Depression	22 (45%)	27 (55%)	65 (54%)	56 (46%)	
No Depression	74 (20%)	301 (80%)	84 (23%)	285 (77%)	
Sleep Disturbances	58 (30%)	133 (70%)	84 (41%)	119 (59%)	
No Sleep Disturbances	38 (16%)	195 (84%)	65 (23%)	222 (77%)	

Kaylee Pigott, B.S., B.A.,^{1,2} Samrita Thapa, M.P.H.,^{1,3} Anneka Sonstroem, B.A.,^{1,3} Tim Hullar, M.D.,¹ Sarah M Theodoroff, Ph.D., ^{1, 4} Leah Barger, B.S.,⁵ Kathleen Carlson, Ph.D.,^{1, 3} Kelly M Reavis, Ph.D.^{1,3}

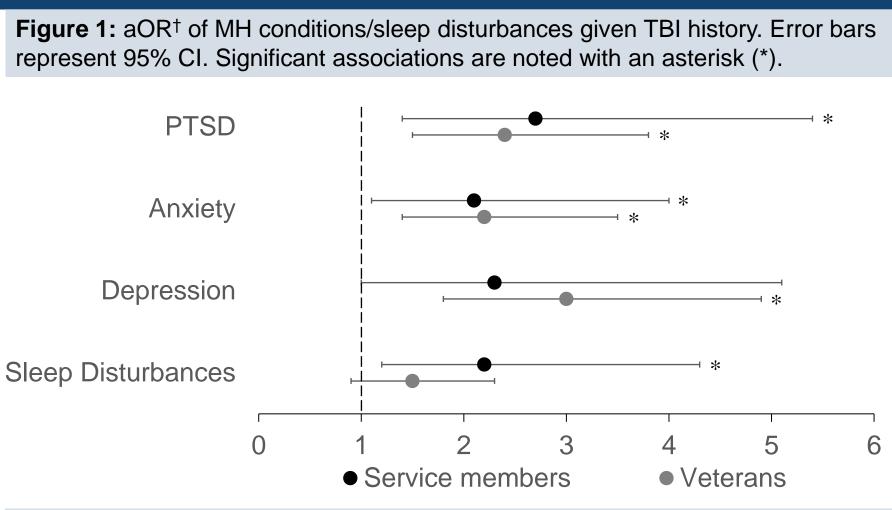


Figure 2: aOR of MH conditions/sleep disturbances given TBI cause. Error bars represent 95% CI. Significant associations are noted with an asterisk (*).

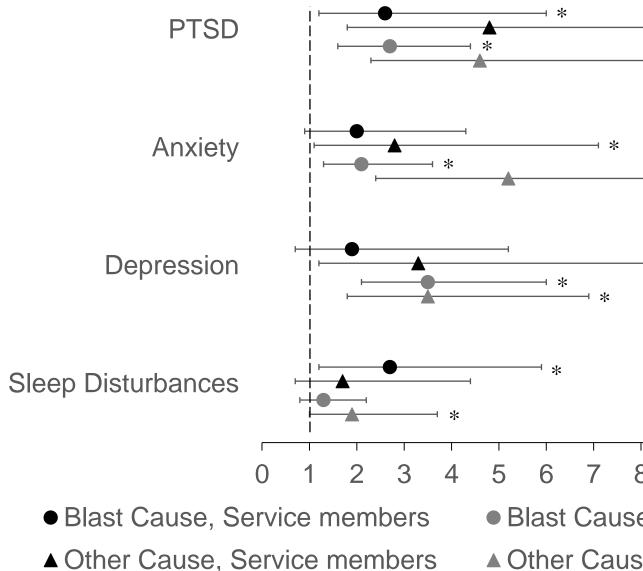
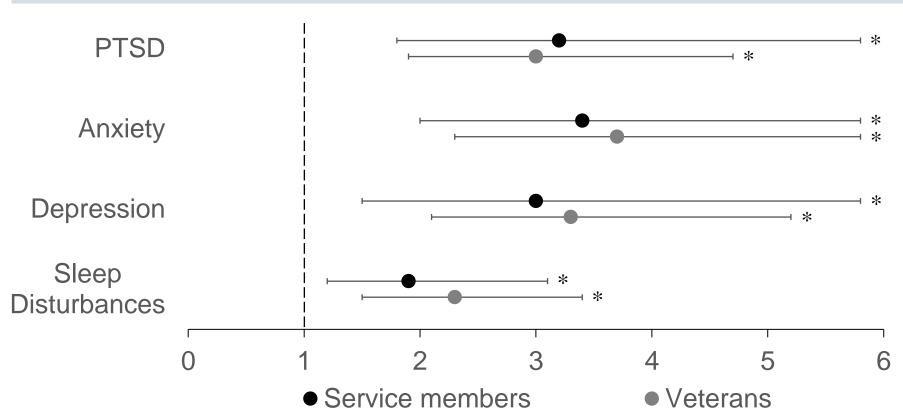



Figure 3: aOR⁺ of dizziness given MH condition/sleep dist status. Error bars show 95% CI. Significant associations a (*).

		*			
			:	*	
		*			
		10			
е, '	Vete	eran	S		
se,	Vet	erar	IS		
		e scr		-	
re r	note	d wit	h an	aste	erisk

DISCUSSION

- Our findings corroborate previously observed associations between TBI history and MH conditions/sleep disturbance history.
- Controlling for confounding factors, self-reported dizziness was more prevalent in Service members and Veterans who screened positive for MH conditions and sleep disturbances than in those who did not.
- This suggests that MH conditions and sleep disturbances mediate some of the observed association between TBI and dizziness in this population.
- TBI-related dizziness may be related to peripheral (auditory and vestibular systems) and/or central (neurological) dysfunction.² Possible mediators include psychological and physiological disruptions. An interprofessional approach may be warranted for assessment and treatment of self-reported dizziness in Service members and Veterans with TBI
- Future research should examine if treatment of MH conditions and/or sleep disturbances helps mitigate self-reported dizziness in this population.

REFERENCES

- ¹Whiteneck, G. G., Cuthbert, J. P., Corrigan, J. D., & Bogner, J. A. (2016). Risk of negative outcomes after traumatic brain injury. Journal of Head Trauma Rehabilitation, 31(1), E43-E54. https://doi.org/10.1097/htr.000000000000141
- ²Akin, F. W., Murnane, O. D., Hall, C. D., & Riska, K. M. (2017). Vestibular consequences of mild traumatic brain injury and blast exposure: A review. Brain Injury, 31(9), 1188-1194. https://doi.org/10.1080/02699052.2017.1288928
- ³Taylor, B. C., Hagel, E. M., Carlson, K. F., Cifu, D. X., Cutting, A., Bidelspach, D. E., & Sayer, N. A. (2012). Prevalence and Costs of Co-occurring Traumatic Brain Injury With and Without Psychiatric Disturbance and Pain Among Afghanistan and Iraq War Veteran VA Users. Medical Care, 50(4), 342–346.
- ⁴Tanev, K. S., Pentel, K. Z., Kredlow, M. A., & Charney, M. E. (2014). PTSD and TBI co-morbidity: Scope, clinical presentation and treatment options. *Brain* Injury, 28(3), 261–270. https://doi.org/10.3109/02699052.2013.873821
- ⁵Henry, J. A., Griest, S., Reavis, K. M., Grush, L., Theodoroff, S. M., Young, S., Thielman, E. J., & Carlson, K. F. (2021). Noise Outcomes in Servicemembers Epidemiology (NOISE) Study: Design, Methods, and Baseline Results. Ear and Hearing, 42(4), 870-885. https://doi.org/10.1097/AUD.000000000000974
- ⁶Prins, A., Bovin, M. J., Kimerling, R., Kaloupek, D. G, Marx, B. P., Pless Kaiser, A. & Schnurr, P. P. (2015). Primary Care PTSD Screen for DSM-5 (PC-PTSD-5) [Measurement instrument].
- ⁷Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
- ⁸Johns MW. A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep 1991; 14(6):540-5.

ACKNOWLEDGEMENTS

This work was supported by the Ruth L. Kirschstein NRSA Short-Term Institutional Research Training Grant T35 DC 8764-12 and grants from the United States (U.S.) Department of Defense (DoD) Congressionally Directed Medical Research Program (PR121146, JW160036, and JW210396), the DoD Hearing Center of Excellence (HCE; Air Force Research Laboratory S-16945-02 and Air Force Medical Operations PR121146), and U.S. Department of Veterans Affairs Rehabilitation Research and Development (RR&D) Research Career Scientist Awards (C9247S and 1 IK6 RX002990). This work was also supported with resources and the use of facilities at the DoD HCE, Lackland Air Force Base, San Antonio, Texas, and the VA RR&D National Center for Rehabilitative Auditory Research (NCRAR) (Award #C9230C, Center Award #C2361C/I50 RX002361) at the VA Portland Health Care System, Portland, Oregon. The views expressed are those of the authors and do not represent the views of the U.S. Department of Veterans Affairs, or the United States Government. Poster presented at the American Auditory Society Annual Meeting, Scottsdale, AZ March 2023.